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An ablation model of frozen soil in which the thaw front does not coincide with 
the breakup front is proposed. 

Drilling of ice-cemented frozen sand under conditions of a positive temperature is 
accompanied by the formation of pockets; this is a result of the simultaneous thawing and 
erosion of the walls of the well [i]. It was initially assumed that all of the sand in 
the thawed layer is subject to erosion [2], so that pocket formation was reduced to an 
ablation process. This representation does not agree with the facts concerning the forma- 
tion of a clay crust on the well wall, as well as slipping of a large quantity of sand into 
the well shaft if circulation stops; on the contrary, these processes show that a signifi- 
cant part of the thawed layer remains where it is formed. In this connection it was proposed 
that pocket formation is a more complicated process combining thawing and erosion in wi~ich 
the boundary where thawing of interstitial ice starts runs ahead of the boundary where break- 
up of the mineral framework starts, and between those boundaries there forms a transitional 
layre containing both water and ice. The transitional zone forms owing to the fact that 
the rate of heat transfer is significantly higher along the mineral framework than along 
the ice in the pores. 

It is shown below that this, more general, ablation process in which the thaw front 
does not coincide with the breakup front admits a simple quantitative description when in 
the transitional zone the pore volume freed up when the ice thaws is immediately filled 
with water flowing from the outside. The results of the numerical modeling are consis~:ent 
with the known experimental facts. 

We shall assume that a semiinfinite flat wall, consisting of uniform sand, in which 
pores, outside the thaw front x ~ Xs(t) are entirely filled with ice, is subjected to abla- 
tion in the sense indicated. In the intermediate zone xm(t) ~ x ~ xs(t) the ice content 
increases monotonically up to unity at x = Xs(t). Because of the assumption made 
above that the pore space freed up as the ice melt is filled with water flowing 
in from outside the space the ice content in the transitional zone is uniquely deter- 
mined by the degree of saturation with water o(x, t). It is assumed to be equal to zero 
on the thaw boundary O(Xs, t) = 0 and at m(t) it is constant a m = O(Xm, t). It is assumed 
that the corresponding ice content i - ~ is no longer sufficient to withstand, together 
with the weak mineral cement, the erosion of the framework by the flow of circulating water, 
moving with a constant velocity along the wall perpendicular to the x-axis. 

The ice in the transitional zone occupies the central part of the pores, and the water 
lies adjacent to the warmer mineral framework. It is assumed here that the temperature of 
the framework is equal to that of the water, while the temperature of the ice is constant 
and equal to the melting temperature T s. The ice melts as a result of heat flow from the 
mineral framework. In accordance with this picture heat flow in the transitional zone is 
determined by the equations 

V~.IvT1 ~ q,  = (c~)1 OT1 a--7-' . . ,~x<~x. ,  11) 
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a~ 
qi =~ K1 (Tt - -  T~) = mp iL .  

a t  ' (2) 

L = (1 - -m)  ~w, (cp), = m~(cO)w+ (1 - -  m ) ( c , o ) r . .  

The l a s t  e q u a l i t y  i n  E q s .  ( 2 )  e x p r e s s e s  t h e  i n t e n s i t y  o f  h e a t  t r a n s f e r  b e t w e e n  t h e  
framework and the ice in terms of the increase in the degree of saturation with water, which 
complements the degree of saturation of the pore space with ice to unity by virtue of the 
assumption made above that water flows freely into the transitional zone from outside the 
zone. According to [3], the heat going into heating of the water is included on the right 
side of (i). The contribution of thewater film to the limiting thermal conductivity is 
not included on the right side of Eq. (i), since it participates only in the transverse 
flow of heat. Because of this the coefficient of heat transfer K I depends on o. 

In the frozen rock Xs(t) < x < ~ the heat transfer is described by the equation 

OT 
VLV T ~- c 9 - - ,  ( 3 )  

at 

where 

= m L i +  (I --.0 ~ cp = m ( c p ) i +  (I - -  m)(cP)fw. 

We give the following boundary and initial conditions: 

t = 0: T = Ti; x = o o :  T = T~; x = xs: %lvTi ~ LvT; 

T1 ~ T =- Ts; x ~ x,n: q = - - % l v T 1 ;  Ti  = Tm, 

H e r e  q i s  t h e  g i v e n  h e a t  f l u x  a t  t h e  s u r f a c e  o f  a b l a t i o n  x = X m ( t )  a n d  T m i s  t h e  unknown 
t e m p e r a t u r e  on t h i s  s u r f a c e  a n d  i s  d e t e r m i n e d  t o g e t h e r  w i t h  x m a n d  x s i n  t h e  c o u r s e  o f  t h e  
solution of the problem. 

To solve the problem we shall assume that o m is small and the dependence of the coef- 
ficient K I on o can be neglected. 

Using the dimensionless variables and parameters 

T ~  - -  T~ 
- - ;  O , , =  o ~ = T ~ - - T ~  ; 0--- T - - T ~  

T , - - T ~  T , - - T ~  

t h e  p r o b l e m  p o s e d  r e d u c e s  t o  s o l v i n g  t h e  e q u a t i o n s  

O0 020 O0, 
0-7= a; 2 ( ~ < ~ < o o ) ;  -----or 

with the following 

Eqs. 

020, 
a~ 2 

T s - -  T i 

0~ Olin < ~ < zis) (4)  

initial and boundary conditions: 

~oo: 0~--I; ~0: 0=--I; ~=~s: 01=0=0; 

a~ a; a~ 

We shall seek 8 and 81 as functions of only one variable A = n -- ~. 
(I)- (3) shows that 

0 = exp ~ q ~ A -  I, 

, /(+ exD {1,AshA ~h + 1 

O, = O,nf~(A); f~(A) = " 2 

. '  V( ' ;V" exp -~-- 4hAm sh Ar~ + 1 

(5) 

Substitution into 

(6) 

(7) 

where A m = ns - ~m" 

668 



The conditions given in Eq. (5) on the boundary temperatures are thus automatically 
satisfied, and the conditions for continuity of the heat fluxes head to the following 
equalities : 

0mf~ (Am) = 7qo; 7 = X~,/I.~, (8)  

G = Omf~ (Am), (9)  

from which a m and qs a r e  d e t e r m i n e d  f o r  g iven  v a l u e s  o f  0 m and cm" I f  t h e  l a t t e r  q u a n t i t i e s  
a r e  c o n s t a n t ,  t h e n  a m and qs a r e  a l s o  c o n s t a n t .  Then t h e  s o l u t i o n  o b t a i n e d  i s  o f  t h e  
t r a v e l i n g - w a v e  t y p e  [4 ] .  S t e f a n ' s  s o l u t i o n  f o r  a b l a t i o n  [5 ] ,  which can be o b t a i n e d  f::om 
our solution by assuming that the transitional zone has zero thickness, is also of the same 
type. 

To determine the unknown 0 m we shall employ the equalities (2) for heat transfer within 
the transitional zone. These equations have the following dimensionless form: 

O 1 = l 0(Y I = nzpiLcq/% 1 (T~ -- Ti). 
o r '  

It is obvious that the degree of saturation with water o in the transitional zone is 
also a function of A, o = ~(A), and according to the last equality 

Omfl (a) = ~id~' (A). 

By integration we obtain from here, using the condition a(Xs, t) = O, 

~(A)=  om z, !" h (A) d_A. /% 

Since the f u n c t i o n  f l ( A )  from Eq. (7)  s a t i s f i e s  the equat ion 

f ,  (a) = f;" (A) - ; W ;  (a), 
the integral leads to the equality 

O,~ f, 0,~ ~,,,, = ~ (A,,,) = ~ld [ I i  (A,.,,) - -  (O)l - -  - 7 - -  h (A,,,). 

Using Eqs. (8) and (9) and f1(Am) = I, we obtain 

~I0) Om -=- '.-,m "7 - -  (YraI. 

The equalities Eqs. 
ming the unknowns Om, A m and qs" 

Combining Eq. (i0) with Eqs. 
ing two equations: 

(8), (9), and (i0) give a complete system of equations for deter- 

(8) and (9) in order to eliminate Om, we obtain the follow- 

1 
~1' (Y) = Y + --, 111 ) 

thx 

3'e~Y~,~(y) = ~m Y l  __f12 1/1 th~x, (1.2) 
9 

where 

i / i + )  , / J i , . )  x=-A~, il q - l ,  Y = V ~ l s  l/ /  - - ~ h  q - l ,  

( y )  = 
2y (m 3/I  - -  yz 

This system can be easily solved by the method of successiveapproximations. The foLlow- 
ing values of the physical parameters were used in the calculation: Xfw = 4.64 W/(m-K); 
Xi = 2.22 W/(m.K); (cP)fw = 1.63"i0 s J/(m3.K); (cp) i = 1.94.106 J/(m3.K); m = 0.4; K I = 
300 W/(m3.K); q = i0 and i00 W/m 2. 
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Fig. i. Ratio of the rate of erosion Xm with different 
values of o m to the rate of ablation in the standard 
formulation: i) T i = --I~ 2) T i = -5. 

Fig. 2. Velocity of the erosion front Xm (cm/day) and 
the thickness of the intermediate zone x s - Xm(Cm) versus 
the intensity of the heat flux at the front: i, 3) 
q = i0 W/m2; 2, 4) i00. 

It is natural to compare the results of the calculations of dxm/dt : dxs/dt = 6sa1~ 
using the system (11)-(12) with the velocity of the ablation front in the standard formula- 
tion. It consists of solving Eq. (3) with the boundary conditions 

X = X a : . T = T ~ ;  q = m p i i  dx~ ~ aT 
�9 at Ox 

and t h e  same i n i t i a l  c o n d i t i o n s .  Us ing  t h e  method p r e s e n t e d  a b o v e  i t  i s  e a s y  t o  show t h a t  
t h e  v e l o c i t y  o f  t h e  a b l a t i o n  f r o n t  w i l l  be d e t e r m i n e d  by t h e  e x p r e s s i o n  

.... dxa -~ q/Im~.L - ~  c9 (T~ - -  Tr (13) 
dL 

As one can see from Fig. i, the rate of erosion Xa, found under the condition that 
there is no transitional zone, is close to x m only in the case when thedegree of satura- 
tion with water at the front o m = i. This situation is possible for low flow velocities, 
when even a small quantity of ice in the pores is sufficient for securing grains of sand. 
Converserly, for a high flow velocity of the liquid in the well, when the breaking of the 
ice-cement bonds between the grains.of sand becomes possible with a high ice content, which 
corresponds to small values of a m , x m is slightly greater than xa. This result is confirmed 
by the fact that as the velocity of the mud decreases the intensity of the breakup of the 
walls of the well decreases appreciably. In addition, the inequality Xm > xa implies that 
the volume of the sand carried out of the well should exceed, often by a large amount, the 
volume of the sand in the thaw zone calculated based on the model of standard ablation. 
This result is completely confirmed by practical observations [i, 6]. 

The appreciable decrease, shown in Fig. i, in the breakup velocity as the initial tem- 
perature of the frozen rocks T i decreases also agrees with experience in drilling wells. 

One can see from Fig. 2 that the velocity of the breakup front depends strongly on 
the intensity of the heat flow to the wall, while the thickness of the intermediate zone 

is insensitvie to changes in the heat flow. Thus no matter how weakly the well wall is 
heated by the circulating liquid, a quite appreciable layer of thawed sand forms on the 
wall. Thanks to this, a lay crust forms on the well wall; this is confirmed by model ex- 
periments [i]. The formation of a clay crust cannot be explained based on ablation [2]. 

The obtained results make it possible to understand the physical basis for the methods, 
described in [i], used for reducing pocket formation during the drilling of wells using 
solutions with a positive temperature. First, the velocity of the rising flow of circulat- 
ing water decreases. In the process, the rate of erosion as well as the intensity of heat 
transfer decrease. Second, the strength of the bonding of the coagulation structure with 
the interstitial water increases. The inverse quantity is usually called the water yield 
or the filtration index of the clay solution. For low water yield the mud itself and not 
its filtrate is pulled into the interstitital space of the transitional zone freed up as 
the ice melts. This strengthens the transitional zone. The water yield of the mud can be 
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reduced by introducing polymer additives. These additives can be chosen so as to decrease 
at the same time the heat transferred from the mud. 

NOTATION 

Here, x and t are the spatial coordinate and thetime; Xm(t) , Xs(t) are the coordinates 
of the erosion and thaw fronts; Xa(t) is the coordinate of the ablation front in the standard 
formulation; T i is the initial temperature of the porous medium; T s is the melting point of 
the interstitial ice; T m is the temperature of the soil framework, corresponding to a fixed 
degree of saturation with water Om; o(x, t) is the degree of saturation of the pore space 
between x m and x s with water; o m = o(x m, t), %w, hi, %fw are the thermal conductivity of ice, 
water, and the soil framework; (cP)i, (Cp)w, (cP)fw are the corresponding volume heat capaci- 
ties; Pi is the density of ice; L is the specific heat of melting of ice; and, m is t~e 
porosity of the soil. 
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SOLUTION OF THE HEAT CONDUCTION PROBLEM FOR LAMINAR ORTHOTROPIC 

SLABS IN A SPATIAL FORMULATION 

V. S. Sipetov, Sh. Sh. Tuimetov, 
and O. N. Demchuk 

UDC 5 ; ; 6 . 2 4  

A solution is obtained for the stationary heat conduction problem in a spatial 
formulation for rectangular slabs with an arbitrary quantity of orthotropic 
layers. 

A survey of investigations in the area of the analysis of laminar slabs under thermal 
actions showed that there are no solutions in a three-dimensional formulation for slabs 
with anisotropic (orthotropic) layers. 

A laminar slab in a stationary temperature field is examined in this paper. The slab 
is referred to a rectangular xz,x2,x 3 coordinate system. The problem is solved by the ~on- 
jugatuion method [i]. Zero temperature is maintained on the slab side surfaces, i.e., ,ge 
have T = 0 for x I = 0, al and x= = 0, a2. The following boundary conditions [2] are possible 
on the slab face surfaces (x s = b(s s = 0, n): 

i) First kind 

T(xi, b (~ = [(0 ~ ) ,  1 = 0, Iz; i = 1, 2; 1)  

2) Second kind 

~(3~T,3 (xz, b (~ = q(o) (xl); k(f ~ T,o (xz, l /~ )  = q(~ (xi); c2) 
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